Jordan Canonical Form: Application to Differential Equations

نویسنده

  • Steven H. Weintraub
چکیده

Jordan Canonical Form ( JCF) is one of the most important, and useful, concepts in linear algebra. In this book we develop JCF and show how to apply it to solving systems of differential equations. We first develop JCF, including the concepts involved in it–eigenvalues, eigenvectors, and chains of generalized eigenvectors.We begin with the diagonalizable case and then proceed to the general case, but we do not present a complete proof. Indeed, our interest here is not in JCF per se, but in one of its important applications.We devote the bulk of our attention in this book to showing how to apply JCF to solve systems of constant-coefficient first order differential equations, where it is a very effective tool. We cover all situations–homogeneous and inhomogeneous systems; real and complex eigenvalues.We also treat the closely related topic of the matrix exponential.Our discussion is mostly confined to the 2-by-2 and 3-by-3 cases, and we present a wealth of examples that illustrate all the possibilities in these cases (and of course, a wealth of exercises for the reader).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infinite-dimensional versions of the primary, cyclic and Jordan decompositions

The famous primary and cyclic decomposition theorems along with the tightly related rational and Jordan canonical forms are extended to linear spaces of infinite dimensions with counterexamples showing the scope of extensions.

متن کامل

The Tau-Collocation Method for Solving Nonlinear Integro-Differential Equations and Application of a Population Model

This paper presents a computational technique that called Tau-collocation method for the developed solution of non-linear integro-differential equations which involves a population model. To do this, the nonlinear integro-differential equations are transformed into a system of linear algebraic equations in matrix form without interpolation of non-poly-nomial terms of equations. Then, using coll...

متن کامل

Lecture 4: Jordan Canonical Forms

This lecture introduces the Jordan canonical form of a matrix — we prove that every square matrix is equivalent to a (essentially) unique Jordan matrix and we give a method to derive the latter. We also introduce the notion of minimal polynomial and we point out how to obtain it from the Jordan canonical form. Finally, we make an encounter with companion matrices. 1 Jordan form and an applicati...

متن کامل

Application of new basis functions for solving nonlinear stochastic differential equations

This paper presents an approach for solving a nonlinear stochastic differential equations (NSDEs) using a new basis functions (NBFs). These functions and their operational matrices are used for representing matrix form of the NBFs. With using this method in combination with the collocation method, the NSDEs are reduced a stochastic nonlinear system of equations and unknowns. Then, the error ana...

متن کامل

NUROP Congress Paper Jordan Canonical Forms of Linear Operators

Any linear transformation can be represented by its matrix representation. In an ideal situation, all linear operators can be represented by a diagonal matrix. However, in the real world, there exist many linear operators that are not diagonalizable. This gives rise to the need for developing a system to provide a beautiful matrix representation for a linear operator that is not diagonalizable....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009